
Usage of algorithm of fast updates of QR

decomposition to solution of linear regression models

Michał Bernardelli

Institute of Econometrics

Warsaw School of Economic

Warsaw, Poland

michal.bernardelli@sgh.waw.pl

Abstract — In the paper the description of the algorithm of

solving the linear least squares problem with QR decomposition

method and their analysis of usefulness to the fast changing data

is presented. There exist algorithms that compute the new

factorization QR of the matrix with a row or column added or

deleted by updating the factors Q and R. The new approach is

based on the remark that the Q matrix is not needed explicitly to

solve the linear regression problems. Therefore the algorithm of

fast updates of the QR decomposition without constructing the

orthogonal matrix is developed.

The proposed algorithm is compared to the algorithm of the QR

decomposition’s updates using Givens rotations to show its

superior computation speed. Results of the computer simulation

for the data from the foreign exchange market are presented. For

the completeness parts of the source code of the algorithm in

Matlab-style are included.

Keywords - linear least square problem, QR decomposition

updates, Givens rotation, linear regression, numerical algorithm

I. INTRODUCTION

A. The linear least squares problem

The unknown parameters of the linear regression model are
often calculated as the solution of the linear least squares
problem. The description of least squares problem in the linear
and nonlinear form could be found for example in [2].

The solution of the linear least squares problem is a vector
nRx Î*

such, that

 ,AxbminAxb
2Rx2

*

n
-=-

Î
 (1)

where
mRbÎ and the full rank matrix

nmRA ´Î is

overdetermined, that is m ≥ n.

There were developed several ways of solving linear least
squares problem, most of all the following:

1. Solving normal system of equations

bAAxA TT = by finding pseudoinverse A
+

 .)(1* bAAAbAx TT -+ == (2)

This method however is not numerically efficient, see
[5].

2. Using orthogonal decomposition methods. The QR

factorization of the matrix A is given by

 A = QR, (3)

where
mmRQ ´Î is orthogonal and

nmRR ´Î is

upper trapezoidal, that is matrix with elements rij = 0

for i>j. Having the factors Q and R computed, one

gets the equivalent system of equations

 dbQRx T == , (4)

which is easy to solve because of the special form of

the matrix R. Orthogonal decomposition methods are

numerically stable.

B. The QR factorization

There are couple algorithms of calculating the QR

decomposition of the given matrix A. All of them vary in

computational and numerical complexity. The basic methods

are, see [4], [6] or [8]:

1. Gram-Schmidt orthogonalization,

2. Householder reflections,

3. Givens rotations.

Codes of those algorithms could be found in [7] and [9]. The

cost of the most efficient method, Householder reflections, is

only 2mn
2
 floating point operations (flops). This is however

the cost of the factorization without constructing the

orthogonal matrix Q explicitly. To get the factor Q one need

approximately m
4
 extra floating point operations. For two-

column matrix A, that is for n=2, the situation is better – the

cost of factorization and constructing both Q and R matrices is

4m
2
 flops.

Besides the computational speed of the algorithms it is

important to consider the memory necessary for those

algorithms to work. Definitely the most consuming is the

storage of the matrix Q. In many real-life cases m is much

bigger then n. Therefore the memory needed for the storage of

the orthogonal factor of the QR decomposition is proportional

to m
2
. Using Householder reflections or Givens rotations it is

enough to store data proportional to mn, which is much less

then storing the matrix Q explicitly. For instance each Givens

SECTION

13. Information Technology

Electronic International Interdisciplinary Conference 2012

September, 3. - 7. 2012

INTERNATIONAL CONFERENCE

http://www.eiic.cz - 699 -

INTERDISC
IP

LIN
A

R
Y

C
O

N
FERENCE

EIIC
2 0 1 2

rotation, see [3], is exactly specified by the angle of rotation,

sinus or cosines of that angle. This is only one scalar for each

of those unitary transformations. It is easy to calculate how

many Givens rotations are needed to get the QR factorization

of the given matrix A. For the first column it is m-1 rotations,

m-2 for the second column and generally m-k Givens

transformations for the k-th column. Summing all of that one

gets exactly (m-n-1)n/2 Givens rotations, which is much less

than m
2
 – the cost of storing the whole matrix Q.

It is clear that adding into algorithm the construction of the

matrix Q changes dramatically the memory and computational

cost of the whole algorithm. The matrix Q however is needed

only to calculate the vector of the right side of the system of

equations (4). One could achieve this goal actually even

without constructing this orthogonal matrix. For example

stored numbers defining Givens rotations could be used to

transform the vector b from (1) to the vector d form (4) just by

doing the sequence of those rotations. This transformation is

less time and memory consuming than constructing the matrix

Q and multiplying it by the vector b.

C. Fast changing data

There are situations where is a need to solve many linear

least squares problems with similar matrices and right side

vectors. The typical example is a sequence of constantly

coming data that are the inputs to the linear regression model.

In that case the two consecutive models differ only in the new

just read row
1
 of data. One solution is to compute the QR

factorization each time. Instead it is better to update the

previous factorization due to the newly received data.

Consider a problem with a fast changing data and a linear

regression model build only on the newest m rows. There are

two basic steps to perform to get the up-to-date QR

factorization, see Fig. 1:

1. procedure qrdelete – update of the QR factorization

after removing the oldest data (first row),

2. procedure qrinsert – update of the QR factorization

after adding the newest data (last row).

The names of the procedures, qrdelete and qrinsert, are

taken from the article [1].

Figure 1. Two steps of updating the QR factorization – procedures qrdelete

and qrinsert.

1
 Similarly, you can consider the new columns instead of

rows.

Of course the difference in computational complexity

between the full QR factorization algorithm and procedures

updating the existing factors of the decomposition are

negligible for small values of m. The bigger number of rows

of the matrix A the more noticeable superiority of the updating

algorithms over the QR decomposition method. In [1] there

are presented the results of the computer simulation

confirming that fact.

D. Updating the factors Q and R

The QR factorization update procedures are based on

Givens rotations. The notation
mm

ji RT ´Î, will be used for

the Givens matrix which is the representation of a Givens

rotation in the (i, j) plane. In [1] there are included the Matlab-

style source codes of the procedures qrdelete and qrinsert. You

can also find there the theoretical proof of computational cost

of those procedures.

The idea behind updates of the factors Q and R is presented

for the completeness of the description and the comparison

purpose in the further parts of this paper. We start with the

qrinsert procedure. Given the factorization of the matrix A as

in (3) and the new row of data rm+1 the new equation could be

written it the form

 .
10

0

11
÷÷
ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ

++ mm r

RQ

r

A
 (5)

Using the sequence of Givens rotations

 1,1,11,21,1 ++-++= mnmnmm TTTTT K (6)

the last row could be transformed into the zero vector. The

updated factors Q
~

 and R
~

 are then defined as

 T
Q

Q ÷÷
ø

ö
çç
è

æ
=

10

0~
 and .

~

1
÷÷
ø

ö
çç
è

æ
=

+m

T

r

R
TR (7)

It is worth to stress that the matrix Q is not important in the

context of computing the transformation matrix T and the final

result of the linear least squares problem.

To present the concept of the procedure qrdelete lets

rewrite at first the equation (3) in the form

 .
111

÷÷
ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ

restrestrest R

r

Q

q

A

a
 (8)

The main step of the procedure is to use the sequence of

Givens rotations

 2,13,24,31,2,1 TTTTTT mmmm K---= (9)

to transform q1, the first row of the matrix Q, to the unit vector

getting

 ,~

~

~
0

01
~

11

÷÷
ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ

R

r

QA

a
 (10)

where restAA =
~

,

SECTION

13. Information Technology

Electronic International Interdisciplinary Conference 2012

September, 3. - 7. 2012

INTERNATIONAL CONFERENCE

http://www.eiic.cz - 700 -

INTERDISC
IP

LIN
A

R
Y

C
O

N
FERENCE

EIIC
2 0 1 2

(a) (b)

Procedure qrdelete_new

input: C, S, R, d, m

output: C
~

, S
~

, R
~

, d
~

R(2:3,:) = [C(m-2,2) S(m-2,2);

 -S(m-2,2) C(m-2,2)]*R(2:3,:)

R(1:2,:) = [C(m-1,1) S(m-1,1);

 -S(m-1,1) C(m-1,1)]*R(1:2,:)

d(2:3) = [C(m-2,2) S(m-2,2);

-S(m-2,2) C(m-2,2)]*d(2:3)

d(1:2) = [C(m-1,1) S(m-1,1);

-S(m-1,1) C(m-1,1)]*d(1:2)

C(m-2,2) = 0

S(m-2,2) = 0

C
~

 = C(1:m-2,:)

S
~

 = S(1:m-2,:)

R
~

 = R(2:m,:)

d
~

= d(2:m)

 T

rest

T
Q

q

Q ÷÷
ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ 1
~

0

01
 and ÷÷

ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ

rest

T

R

r
T

R

r 11
~

~
. (11)

Let’s emphasize that, in contrast to the procedure qrinsert,

matrix Q is essential in computing the updated factors Q
~

and R
~

in the procedure qrdelete. Therefore even if the factor Q

is not needed directly in solving linear least squares problem,

it is required during calculations while deleting one of the row

from the data. This is the main motivation for finding the new

algorithm with at least the same numerical efficiency but

competitive in terms of computational and memory cost. It

could be achieved by developing an algorithm that uses the

factor Q in its implicit form.

II. DESCRIPTION OF THE QR DECOMPOSITION UPDATES

ALGORITHM

A. Data structure description

The proposed algorithm uses the Givens rotations
represented by the pair of scalars (s; c) meaning sinus and
cosines of the angle of rotation. The generalization of the

notation
mmk

ji RT ´Î, will be used. It represents the Givens

rotation in the (i, j) plane for the matrix elements from the k-th
column. The description of the method will be limited to the
case n=2 which corresponds to the situation of the simplest
linear regression model, that is fitting the straight line to the
given data.

Let S be the matrix of all sinuses and C the matrix of all
cosines of the angle of rotation numbered in the order of their
usage as in Fig. 2. More precisely the QR factorization of the
two-column matrix A using the Givens rotations method is

represented by the matrices
nmRR ´Î ,

nmRS ´-Î 1
 and

nmRC ´-Î 1
, where S and C are equivalent to the matrix Q.

The pair (sij, cij) of elements of the matrices S and C define the
Givens rotation number (j-1)(2m-j)/2+i for j=1,2,…,n and
i=1,2,…, m-j.

Figure 2. (a) The order and (b) the definition of the Givens rotations in

algorithm of the QR factorization of matrix A.

Using matrices R, S and C as a data structure every linear
least squares problem could be written at the expense of
memory proportional to the mn instead of m

2
 scalars, like in

case of the decomposition matrix A to factors Q and R. This
presentation of the problem is convenient and useful in the
construction of the algorithms of updating the QR
factorization.

B. Deleting first row

The idea of the algorithm of deleting the first row of the

data is described in detail in [1]. To find the proper

transformation matrix the elements of the first row of the

matrix Q are needed. Using the data structure with matrices S

and C it is enough to do the reverse Givens rotations
2

1, -mmT

and
1

1, -mmT and delete the last elements in columns of the

matrices S, C, R and d. The main part of the code of the

procedure qrdelete_new in Matlab-style is given in Fig. 3.

Both costs of the procedure qrdelete_new, the memory and

the computational, are constant. This is enormous difference

compared to the original procedure qrdelete from [1], which

has the cost of 4m
2
 flops in case n=2.

C. Inserting new row

As was mentioned before, inserting the new row of the data

does not require the matrix Q itself, but only the second factor

R. Therefore the beginning of the procedure qrinsert_new is

basically the same as the code of the procedure qrinsert from

[1]. This part of the source code is presented in Fig. 4.

What is new in the presented algorithm is the need to

update the two others matrices S and C. After the first step of

the algorithm the ordering of the Givens rotations is not

correct, see Fig. 5, and should be changed.

Figure 3. The code of the procedure qrdelete_new.

SECTION

13. Information Technology

Electronic International Interdisciplinary Conference 2012

September, 3. - 7. 2012

INTERNATIONAL CONFERENCE

http://www.eiic.cz - 701 -

INTERDISC
IP

LIN
A

R
Y

C
O

N
FERENCE

EIIC
2 0 1 2

Procedure qrinsert_new, Part 1

input: C, S, R, d, m, vec, num

output: C
~

, S
~

, R
~

, d
~

% adding the new row to the matrix R

R(m+1,:) = vec

d(m+1) = num
m = m+1

% transforming the vector d and the matrix R
% using the Givens rotations

[C(m-1,1), S(m-1,1)] = givens(R(1,1), R(m,1))

R(1,1) = C(m-1,1)*R(1,1) - S(m-1,1)*R(m,1)
R(m,1) = 0
tmp = R(1,2)

R(1,2) = C(m-1,1)*R(1,2) - S(m-1,1)*R(m,2)
R(m,2) = S(m-1,1)*tmp + C(m-1,1)*R(m,2)

tmp = d(1)
d(1) = C(m-1,1)*d(1) - S(m-1,1)*d(m)
d(m) = S(m-1,1)*tmp + C(m-1,1)*d(m)

[C(m-2,2), S(m-2,2)] = givens(R(2,2), R(m,2))

R(2,2) = C(m-2,2)*R(2,2) - S(m-2,2)*R(m,2)
R(m,2) = 0

(a) (b)

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

I

-

I

=' +
´

000

00

00

000

1,

ii

ii

ii

kk

cs

sc
TR

Figure 4. The first part of the code of the procedure qrinsert_new.

The concept behind updating the Givens transformations is

based on few facts. Firstly it is important to notice that the

multiplication of the matrix representation of the rotation
1

,1 mT is commutative with the Givens rotations of the second

column that are before in the order.

Figure 5. (a) The order and (b) the definition of the Givens rotations after

the first step of the procedure qrinsert_new.

Figure 6. The structure of the matrix representation of the Givens rotation.

That is why the situation before and after correction

updates could be summarized as follows

 ,
~~ 2121

321321
afterbefore

RTTRTTd == (12)

where
1T and

2T are matrices representing sequences of

rotations connected to first and second column respectively

before the update, whereas
1~

T and
2~

T are analogous matrices

after reordering.

The most important conclusion is that the updates could be

divided into two separate steps. At the beginning the first

columns are changed to the proper sets of rotations and then

the second columns of matrices S and C are being corrected.

Secondly it is useful to know the structure of matrix

created by the multiplication of number of Givens matrices. If

by I the identity matrix is denoted and the matrix

representation of one Givens rotation has the structure as in

Fig. 6, then the matrix representation of the sequence of

consecutive Givens rotations has the structure shown in the

Fig. 7. The elements of that matrix are given by the formula

ï
ï
î

ï
ï
í

ì

>

=£-

<£-

+=

=
-+-

+
-+-

+

ij

kijssssc

kijcsssc

ijs

t
iijjj

ji

iijjj

ji

i

ji

0

)1(

)1(

1

111

111

,
L

L
 (13)

where it is assumed that c0=1.

The regularity of this structure is used in the construction

of the updating algorithm. To find the scalars representing the

Givens rotations in the first column it is enough to compare

first columns of the matrices before

 1

,1

1

2,1

1

3,2

1

1,2

1

mmm TTTTT K--= (14)

and after

 1

2,1

1

3,2

1

1,2

1

,1

1~
TTTTT mmmm K---= (15)

SECTION

13. Information Technology

Electronic International Interdisciplinary Conference 2012

September, 3. - 7. 2012

INTERNATIONAL CONFERENCE

http://www.eiic.cz - 702 -

INTERDISC
IP

LIN
A

R
Y

C
O

N
FERENCE

EIIC
2 0 1 2

% updating the second column of C and S

right = d/R(2,2)
tmp = 1

flag = 1

for i = m-2:-1:2

 C(i,2) = flag * tmp * right(m-i)

 S(i,2) = sqrt(1 - C(i,2)^2)

 tmp = tmp / S(i,2)

 flag = -flag

end

C(1,2) = flag * tmp * right(m-1)
S(1,2) = sign(right(m)) * sqrt(1 - C(1,2)^2)

% updating the first column of C and S

tmp1 = C(m-1,1)

tmp2 = S(1,1)

S(1,1) = S(m-1,1)

for i = m-1:-1:2

 C(i,1) = tmp1 * C(i-1,1)

 S(i,1) = sqrt(1 - C(i,1)^2)

 S(1,1) = S(1,1) / S(i,1)

 tmp1 = tmp1 * S(i-1,1) / S(i,1)

end
C(1,1) = tmp1 / S(1,1) * tmp2

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-

-

='

--
+

--
+

--
+

-
´

12541221

2

121

1

321321

2121

11

2,13,24,3,1

)1()1()1(

0

0

0

kk

kk

kk

k

kk

k

kk

kk

cssccsscsss

csccss

cccs

sc

TTTTR

LLLL

MOMM

L

L

L

L

Figure 7. The structure of the matrix representation of the sequence of Givens rotations.

this first step of updating procedure. It is worth to emphasize

that those two matrices
1T and

1~
T are in general not equal. It

is only the first columns that are the same. The detailed code

of this part of the procedure qrinsert_new is presented in

Fig. 8. The computational cost is proportional to m and for

algorithm to work only constant extra memory is needed.

The last part of the reordering of the Givens rotations is

related to the second column of the matrices. After the

previous step all elements of the matrix
1~

T are known, so

from (12) we get

 () .
~~ 12 dTRT

T

= (16)

To get the elements of
2~

T it is enough to compare the

second columns of matrices form both sides of (16). The code

in Matlab-style of the last step of reordering and at the same

time the last part of the procedure qrinsert_new is presented in

Fig. 9.

As in the first step of updating the structure of matrices S

and C, the computational cost is proportional to m. Both costs

of the procedure qrdelete_new, the memory and the

computational, are constant. Therefore the cost of the whole

procedure qrinsert_new is the same, up to the constant, as the

cost of the original procedure qrinsert from [1] and is equal

approximately m flops in case n=2.

Figure 8. The second part of the code of the procedure qrinsert_new.

Figure 9. The third part of the code of the procedure qrinsert_new.

III. NUMERICAL EXPERIMENTS

A. Foreign exchange market

The best way to confirm theoretical properties of the new
developed algorithm and compare its computational speed with
the efficiency of existing algorithms is to perform a computer
simulation on real-life data. The data from the foreign
exchange market, Forex,are perfectly suited for those purposes.

Forex is the market with discrete data, which are generated
in small time intervals. On many websites there are available
archival Forex data at different granulation time, for example
10 minutes, 1 minute, 10 seconds or even two seconds. The
exemplary graph with the data from the Forex market is shown
in Fig. 10.

Because of so short time intervals the on-line analysis of
the Forex data used to predict increase or decrease of the
exchange rate has strict time limits. The computational
effectiveness of used in the analysis algorithms is the issue
here. It is also the excellent example of linear regression
model.

SECTION

13. Information Technology

Electronic International Interdisciplinary Conference 2012

September, 3. - 7. 2012

INTERNATIONAL CONFERENCE

http://www.eiic.cz - 703 -

INTERDISC
IP

LIN
A

R
Y

C
O

N
FERENCE

EIIC
2 0 1 2

.

Figure 10. EUR to USD exchange rate for one hour of the day 16.04.2012.

B. Speed tests

In computer simulation there were used the source codes
presented in this paper and the data from the Forex market in
two-second granularity. There were five time series of the
exchange rates considered: the euro to the Swiss franc
(EUR / CHF), the euro to the Norwegian krone (EUR / NOK),
the euro to the U.S. dollar (EUR / USD), silver to the U.S.
dollar (AG / USD) and gold to the U.S. dollar (AU / USD).

For different number of rows of the linear regression matrix
in the interval from 5 to 700 and for each of five time series of
length 25000 the computations were performed. Two
competitive methods were considered:

1. M1 – the QR factorization updating algorithm with
matrices Q and R constructed and remembered
(procedures qrdelete and qrinsert from [1]),

2. M2 – the QR factorization algorithm with matrices R,
S and C described in this paper (procedures
qrdelete_new and qrinsert_new).

TABLE I. AVERAGE TIME OF COMPUTATIONS DEPENDING ON THE

NUMEBER OF ROWS AND THE UPDATING ALGORITHM: M1 AND M2.
MEASURED TIME ARE PRESENTED IN HUNDREDTHS OF A SECOND.

 m

data

10 100

M1 M2 M1 M2

EUR/CHF 0.35 0.30 2.71 2.27

EUR/NOK 0.31 0.27 2.65 2.23

EUR/USD 0.32 0.28 2.62 2.21

AG/USD 0.31 0.28 2.66 2.23

AU/USD 0.31 0.28 2.59 2.20

AVERAGE 0.32 0.28 2.65 2.23

 m

data

200 300

M1 M2 M1 M2

EUR/CHF 5.50 4.45 8.70 6.67

EUR/NOK 5.61 4.46 8.64 6.67

EUR/USD 5.42 4.39 8.45 6.53

AG/USD 5.47 4.46 8.48 6.53

AU/USD 5.37 4.36 8.42 6.51

AVERAGE 5.48 4.42 8.54 6.58

Computations were performed in Octave, program similar
to Matlab, but distributed under the terms of the GNU General
Public License. The time of computations was measured for
every value of m and every m consecutive values of each of
time series. Obtain times were averaged over the time series
and different values of m. The results are gathered in Tab. I.

The data from the numerical experiment presented in Tab. I
are clearly the confirmation of the theoretical theorems. This
advantage is even better seen in Fig. 11. The new developed
method of updating the QR factorization is faster for every
value of m.

Figure 11. The comparison of the time of computations two methods M1 and M2 depending on number of rows of the matrix A.

SECTION

13. Information Technology

Electronic International Interdisciplinary Conference 2012

September, 3. - 7. 2012

INTERNATIONAL CONFERENCE

http://www.eiic.cz - 704 -

INTERDISC
IP

LIN
A

R
Y

C
O

N
FERENCE

EIIC
2 0 1 2

IV. CONCLUSIONS

Theoretical analysis of new developed algorithm of
updating the QR factorization together with the computer
simulations leads to the following conclusions:

· the computational speed of the new algorithm is much
better than the speed of existing algorithms,

· the numerical properties of the new algorithm is at
least as good as the numerical accuracy of other
methods based on orthogonal decomposition of the
matrix A,

· procedure qrinsert_new is much more time consuming
than the procedure qrdelete_new (proportional to m
flops vs. constant number of operations),

· the memory complexity of the new method is much
improved relatively to existing updating methods
(proportional to m

2
 vs. proportional to mn).

The presented algorithm of updating the QR factorization
without storing the matrix Q explicitly is meant to be the
foundation for solving simple linear least squares problem. It
should be an excellent start for building faster and more
efficient algorithms working on big and fast changing sets of
data. Certainly, it is worth to consider the following
generalizations and modifications of described in this paper
algorithm:

· the extension to the polynomial regression models and
to models with greater number of variables,

· the case of nonlinear regression.

REFERENCES

[1] M. Bernardelli, “Method of QR decomposition’s fast updates for linear
regression models”, Roczniki Kolegium Analiz Ekonomicznych, vol.
27/2012, Warsaw School of Economic, Warsaw, 2012 (in press).

[2] A. Björck, “Numerical methods for least squares problems”, SIAM,
Philadelphia, USA, 1996.

[3] M. Dryja, J. and M. Jankowscy, „Przegląd metod i algorytmów
numerycznych.” Vol. 2, Wydawnictwa Naukowo-Techniczne, Warsaw,
1988.

[4] G. H. Golub, Ch. F. Van Loan, “Matrix Computations (2nd ed.)”, Johns
Hopkins University Press, 1990.

[5] A. Kiełbasiński, H. Schwetlick, „Numeryczna algebra liniowa”,
Wydawnictwa Naukowo-Techniczne, Warsaw, 1992.

[6] D. Kincaid, W. Cheney, „Numerical Analysis: Mathematics of Scientific
Computing, 3rd Edition”, American Mathematical Society, Providence,
RI, 2002.

[7] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery,
“Numerical Recipes: The Art of Scientific Computing (3rd ed.)”,
Cambridge University Press, New York, 2007.

[8] J. Stoer, R. Bulirsch, “Introduction to Numerical Analysis (3rd ed.)”,
Springer, 2002

[9] L. N. Trefethen, D. Bau, “Numerical Linear Algebra”, SIAM,
Philadelphia, USA, 1997.

SECTION

13. Information Technology

Electronic International Interdisciplinary Conference 2012

September, 3. - 7. 2012

INTERNATIONAL CONFERENCE

http://www.eiic.cz - 705 -

INTERDISC
IP

LIN
A

R
Y

C
O

N
FERENCE

EIIC
2 0 1 2

