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Abstract — In the paper the description of the algorithm of 

solving the linear least squares problem with QR decomposition 

method and their analysis of usefulness to the fast changing data 

is presented. There exist algorithms that compute the new 

factorization QR of the matrix with a row or column added or 

deleted by updating the factors Q and R. The new approach is 

based on the remark that the Q matrix is not needed explicitly to 

solve the linear regression problems. Therefore the algorithm of 

fast updates of the QR decomposition without constructing the 

orthogonal matrix is developed.  

The proposed algorithm is compared to the algorithm of the QR 

decomposition’s updates using Givens rotations to show its 

superior computation speed. Results of the computer simulation 

for the data from the foreign exchange market are presented. For 

the completeness parts of the source code of the algorithm in 

Matlab-style are included. 

 

Keywords - linear least square problem, QR decomposition 

updates, Givens rotation, linear regression, numerical algorithm 

I.  INTRODUCTION 

A. The linear least squares problem 

The unknown parameters of the linear regression model are 
often calculated as the solution of the linear least squares 
problem. The description of least squares problem in the linear 
and nonlinear form could be found for example in [2]. 

The solution of the linear least squares problem is a vector 
nRx Î*

such, that 

 ,AxbminAxb
2Rx2

*

n
-=-

Î
 (1) 

where
mRbÎ and the full rank matrix

nmRA ´Î is 

overdetermined, that is m ≥ n. 

There were developed several ways of solving linear least 
squares problem, most of all the following: 

1. Solving normal system of equations 

bAAxA TT = by finding pseudoinverse A
+
 

 .)( 1* bAAAbAx TT -+ ==  (2) 

This method however is not numerically efficient, see 
[5]. 

2. Using orthogonal decomposition methods. The QR 

factorization of the matrix A is given by 

 A = QR, (3) 

where
mmRQ ´Î is orthogonal and 

nmRR ´Î  is 

upper trapezoidal, that is matrix with elements rij = 0 

for i>j. Having the factors Q and R computed, one 

gets the equivalent system of equations 

 dbQRx T == , (4) 

which is easy to solve because of the special form of 

the matrix R. Orthogonal decomposition methods are 

numerically stable. 

B. The QR factorization 

There are couple algorithms of calculating the QR 

decomposition of the given matrix A. All of them vary in 

computational and numerical complexity. The basic methods 

are, see [4], [6] or [8]: 

1. Gram-Schmidt orthogonalization, 

2. Householder reflections, 

3. Givens rotations. 

Codes of those algorithms could be found in [7] and [9]. The 

cost of the most efficient method, Householder reflections, is 

only 2mn
2
 floating point operations (flops). This is however 

the cost of the factorization without constructing the 

orthogonal matrix Q explicitly. To get the factor Q one need 

approximately m
4
 extra floating point operations. For two-

column matrix A, that is for n=2, the situation is better – the 

cost of factorization and constructing both Q and R matrices is 

4m
2
 flops. 

Besides the computational speed of the algorithms it is 

important to consider the memory necessary for those 

algorithms to work. Definitely the most consuming is the 

storage of the matrix Q. In many real-life cases m is much 

bigger then n. Therefore the memory needed for the storage of 

the orthogonal factor of the QR decomposition is proportional 

to m
2
. Using Householder reflections or Givens rotations it is 

enough to store data proportional to mn, which is much less 

then storing the matrix Q explicitly. For instance each Givens 
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rotation, see [3], is exactly specified by the angle of rotation, 

sinus or cosines of that angle. This is only one scalar for each 

of those unitary transformations. It is easy to calculate how 

many Givens rotations are needed to get the QR factorization 

of the given matrix A. For the first column it is m-1 rotations, 

m-2 for the second column and generally m-k Givens 

transformations for the k-th column. Summing all of that one 

gets exactly (m-n-1)n/2 Givens rotations, which is much less 

than m
2
 – the cost of storing the whole matrix Q. 

It is clear that adding into algorithm the construction of the 

matrix Q changes dramatically the memory and computational 

cost of the whole algorithm. The matrix Q however is needed 

only to calculate the vector of the right side of the system of 

equations (4). One could achieve this goal actually even 

without constructing this orthogonal matrix. For example 

stored numbers defining Givens rotations could be used to 

transform the vector b from (1) to the vector d form (4) just by 

doing the sequence of those rotations. This transformation is 

less time and memory consuming than constructing the matrix 

Q and multiplying it by the vector b. 

C. Fast changing data 

There are situations where is a need to solve many linear 

least squares problems with similar matrices and right side 

vectors. The typical example is a sequence of constantly 

coming data that are the inputs to the linear regression model. 

In that case the two consecutive models differ only in the new 

just read row
1
 of data. One solution is to compute the QR 

factorization each time. Instead it is better to update the 

previous factorization due to the newly received data. 

Consider a problem with a fast changing data and a linear 

regression model build only on the newest m rows. There are 

two basic steps to perform to get the up-to-date QR 

factorization, see Fig. 1: 

1. procedure qrdelete – update of the QR factorization 

after removing the oldest data (first row), 

2. procedure qrinsert – update of the QR factorization 

after adding the newest data (last row). 

The names of the procedures, qrdelete and qrinsert, are 

taken from the article [1].  

Figure 1.  Two steps of updating the QR factorization – procedures qrdelete 

and qrinsert. 

                                                           
1
 Similarly, you can consider the new columns instead of 

rows. 

Of course the difference in computational complexity 

between the full QR factorization algorithm and procedures 

updating the existing factors of the decomposition are 

negligible for small values of m. The bigger number of rows 

of the matrix A the more noticeable superiority of the updating 

algorithms over the QR decomposition method. In [1] there 

are presented the results of the computer simulation 

confirming that fact. 

D. Updating the factors Q and R 

The QR factorization update procedures are based on 

Givens rotations. The notation 
mm

ji RT ´Î,  will be used for 

the Givens matrix which is the representation of a Givens 

rotation in the (i, j) plane. In [1] there are included the Matlab-

style source codes of the procedures qrdelete and qrinsert. You 

can also find there the theoretical proof of computational cost 

of those procedures. 

The idea behind updates of the factors Q and R is presented 

for the completeness of the description and the comparison 

purpose in the further parts of this paper. We start with the 

qrinsert procedure. Given the factorization of the matrix A as 

in (3) and the new row of data rm+1 the new equation could be 

written it the form 

 .
10

0

11
÷÷
ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ

++ mm r

RQ

r

A
 (5) 

Using the sequence of Givens rotations  

 1,1,11,21,1 ++-++= mnmnmm TTTTT K  (6) 

the last row could be transformed into the zero vector. The 

updated factors Q
~

 and R
~

 are then defined as 

 T
Q

Q ÷÷
ø

ö
çç
è

æ
=

10

0~
 and  .

~

1
÷÷
ø

ö
çç
è

æ
=

+m

T

r

R
TR  (7) 

It is worth to stress that the matrix Q is not important in the 

context of computing the transformation matrix T and the final 

result of the linear least squares problem. 

To present the concept of the procedure qrdelete lets 

rewrite at first the equation (3) in the form 

 .
111

÷÷
ø
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çç
è
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ø
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æ
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a
 (8) 

The main step of the procedure is to use the sequence of 

Givens rotations 

 2,13,24,31,2,1 TTTTTT mmmm K---=  (9) 

to transform q1, the first row of the matrix Q, to the unit vector 

getting 

 ,~
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where restAA =
~

, 
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(a) (b) 

Procedure qrdelete_new 

input: C, S, R, d, m 

output: C
~

, S
~

, R
~

, d
~

 

 

R(2:3,:) = [C(m-2,2) S(m-2,2); 

   -S(m-2,2) C(m-2,2)]*R(2:3,:) 

R(1:2,:) = [C(m-1,1) S(m-1,1);  

   -S(m-1,1) C(m-1,1)]*R(1:2,:) 

d(2:3) = [C(m-2,2) S(m-2,2); 

-S(m-2,2) C(m-2,2)]*d(2:3) 

d(1:2) = [C(m-1,1) S(m-1,1);  

-S(m-1,1) C(m-1,1)]*d(1:2) 

C(m-2,2) = 0 

S(m-2,2) = 0 

C
~

 = C(1:m-2,:) 

S
~

 = S(1:m-2,:) 

R
~

 = R(2:m,:) 

d
~

= d(2:m) 

 

 T
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Let’s emphasize that, in contrast to the procedure qrinsert, 

matrix Q is essential in computing the updated factors Q
~

 

and R
~

in the procedure qrdelete. Therefore even if the factor Q 

is not needed directly in solving linear least squares problem, 

it is required during calculations while deleting one of the row 

from the data. This is the main motivation for finding the new 

algorithm with at least the same numerical efficiency but 

competitive in terms of computational and memory cost. It 

could be achieved by developing an algorithm that uses the 

factor Q in its implicit form. 

II. DESCRIPTION OF THE QR DECOMPOSITION UPDATES 

ALGORITHM 

A. Data structure description 

The proposed algorithm uses the Givens rotations 
represented by the pair of scalars (s; c) meaning sinus and 
cosines of the angle of rotation. The generalization of the 

notation 
mmk

ji RT ´Î,  will be used. It represents the Givens 

rotation in the (i, j) plane for the matrix elements from the k-th 
column. The description of the method will be limited to the 
case n=2 which corresponds to the situation of the simplest 
linear regression model, that is fitting the straight line to the 
given data. 

Let S be the matrix of all sinuses and C the matrix of all 
cosines of the angle of rotation numbered in the order of their 
usage as in Fig. 2. More precisely the QR factorization of the 
two-column matrix A using the Givens rotations method is 

represented by the matrices
nmRR ´Î , 

nmRS ´-Î 1
 and 

nmRC ´-Î 1
, where S and C are equivalent to the matrix Q. 

The pair (sij, cij) of elements of the matrices S and C define the 
Givens rotation number (j-1)(2m-j)/2+i for j=1,2,…,n and 
i=1,2,…, m-j. 

Figure 2.  (a) The order and (b) the definition of the Givens rotations in 

algorithm of the QR factorization of matrix A.  

 

Using matrices R, S and C as a data structure every linear 
least squares problem could be written at the expense of 
memory proportional to the mn instead of m

2
 scalars, like in 

case of the decomposition matrix A to factors Q and R. This 
presentation of the problem is convenient and useful in the 
construction of the algorithms of updating the QR 
factorization. 

B. Deleting first row 

The idea of the algorithm of deleting the first row of the 

data is described in detail in [1]. To find the proper 

transformation matrix the elements of the first row of the 

matrix Q are needed. Using the data structure with matrices S 

and C it is enough to do the reverse Givens rotations 
2

1, -mmT  

and 
1

1, -mmT  and delete the last elements in columns of the 

matrices S, C, R and d. The main part of the code of the 

procedure qrdelete_new in Matlab-style is given in Fig. 3. 

Both costs of the procedure qrdelete_new, the memory and 

the computational, are constant. This is enormous difference 

compared to the original procedure qrdelete from [1], which 

has the cost of 4m
2
 flops in case n=2. 

C. Inserting new row 

As was mentioned before, inserting the new row of the data 

does not require the matrix Q itself, but only the second factor 

R. Therefore the beginning of the procedure qrinsert_new is 

basically the same as the code of the procedure qrinsert from 

[1]. This part of the source code is presented in Fig. 4.  

What is new in the presented algorithm is the need to 

update the two others matrices S and C. After the first step of 

the algorithm the ordering of the Givens rotations is not 

correct, see Fig. 5, and should be changed. 

Figure 3.  The code of the procedure qrdelete_new. 
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Procedure qrinsert_new, Part 1 

input: C, S, R, d, m, vec, num 

output: C
~

, S
~

, R
~

, d
~

 

 
 

% adding the new row to the matrix R 

R(m+1,:) = vec 

d(m+1) = num 
m = m+1 

% transforming the vector d and the matrix R  
% using the Givens rotations 

[C(m-1,1), S(m-1,1)] = givens(R(1,1), R(m,1)) 

R(1,1) = C(m-1,1)*R(1,1) - S(m-1,1)*R(m,1) 
R(m,1) = 0 
tmp = R(1,2) 

R(1,2) = C(m-1,1)*R(1,2) - S(m-1,1)*R(m,2) 
R(m,2) = S(m-1,1)*tmp + C(m-1,1)*R(m,2) 

tmp = d(1) 
d(1) = C(m-1,1)*d(1) - S(m-1,1)*d(m) 
d(m) = S(m-1,1)*tmp + C(m-1,1)*d(m) 

[C(m-2,2), S(m-2,2)] = givens(R(2,2), R(m,2)) 

R(2,2) = C(m-2,2)*R(2,2) - S(m-2,2)*R(m,2)  
R(m,2) = 0 

 

      

(a) (b) 
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Figure 4.  The first part of the code of the procedure qrinsert_new. 

The concept behind updating the Givens transformations is 

based on few facts. Firstly it is important to notice that the 

multiplication of the matrix representation of the rotation 
1

,1 mT is commutative with the Givens rotations of the second 

column that are before in the order.  

 

Figure 5.   (a) The order and (b) the definition of the Givens rotations after 

the first step of the procedure qrinsert_new. 

Figure 6.  The structure of the matrix representation of the Givens rotation. 

 

That is why the situation before and after correction 

updates could be summarized as follows 

 ,
~~ 2121

321321
afterbefore

RTTRTTd ==  (12) 

where 
1T  and 

2T  are matrices representing sequences of 

rotations connected to first and second column respectively 

before the update, whereas 
1~

T and 
2~

T are analogous matrices 

after reordering. 

The most important conclusion is that the updates could be 

divided into two separate steps. At the beginning the first 

columns are changed to the proper sets of rotations and then 

the second columns of matrices S and C are being corrected. 

Secondly it is useful to know the structure of matrix 

created by the multiplication of number of Givens matrices. If 

by I the identity matrix is denoted and the matrix 

representation of one Givens rotation has the structure as in 

Fig. 6, then the matrix representation of the sequence of 

consecutive Givens rotations has the structure shown in the 

Fig. 7. The elements of that matrix are given by the formula 

 

ï
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kijssssc
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111
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,
L

L
 (13) 

where it is assumed that c0=1. 

The regularity of this structure is used in the construction 

of the updating algorithm. To find the scalars representing the 

Givens rotations in the first column it is enough to compare 

first columns of the matrices before  

 1

,1

1

2,1

1

3,2

1

1,2

1

mmm TTTTT K--=  (14) 

and after  

 1

2,1

1

3,2

1

1,2

1

,1

1~
TTTTT mmmm K---=  (15) 
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% updating the second column of C and S 

right = d/R(2,2) 
tmp = 1 

flag = 1 

for i = m-2:-1:2 

 C(i,2) = flag * tmp * right(m-i) 

 S(i,2) = sqrt(1 - C(i,2)^2) 

 tmp = tmp / S(i,2) 

 flag = -flag 

end 

C(1,2) = flag * tmp * right(m-1) 
S(1,2) = sign(right(m)) * sqrt(1 - C(1,2)^2) 

 

% updating the first column of C and S 

tmp1 = C(m-1,1) 

tmp2 = S(1,1) 

S(1,1) = S(m-1,1) 

for i = m-1:-1:2 

 C(i,1) = tmp1 * C(i-1,1) 

 S(i,1) = sqrt(1 - C(i,1)^2) 

 S(1,1) = S(1,1) / S(i,1) 

 tmp1 = tmp1 * S(i-1,1) / S(i,1) 

end 
C(1,1) = tmp1 / S(1,1) * tmp2 
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Figure 7.  The structure of the matrix representation of the sequence of Givens rotations.

this first step of updating procedure. It is worth to emphasize 

that those two matrices 
1T  and 

1~
T  are in general not equal. It 

is only the first columns that are the same. The detailed code 

of this part of the procedure qrinsert_new is presented in 

Fig. 8. The computational cost is proportional to m and for 

algorithm to work only constant extra memory is needed. 

The last part of the reordering of the Givens rotations is 

related to the second column of the matrices. After the 

previous step all elements of the matrix 
1~

T  are known, so 

from (12) we get 

 ( ) .
~~ 12 dTRT

T

=  (16) 

To get the elements of 
2~

T  it is enough to compare the 

second columns of matrices form both sides of (16). The code 

in Matlab-style of the last step of reordering and at the same 

time the last part of the procedure qrinsert_new is presented in 

Fig. 9.  

As in the first step of updating the structure of matrices S 

and C, the computational cost is proportional to m. Both costs 

of the procedure qrdelete_new, the memory and the 

computational, are constant. Therefore the cost of the whole 

procedure qrinsert_new is the same, up to the constant, as the 

cost of the original procedure qrinsert from [1] and is equal 

approximately m flops in case n=2. 

 

Figure 8.  The second part of the code of the procedure qrinsert_new. 

Figure 9.  The third part of the code of the procedure qrinsert_new. 

 

III. NUMERICAL EXPERIMENTS 

A. Foreign exchange market 

The best way to confirm theoretical properties of the new 
developed algorithm and compare its computational speed with 
the efficiency of existing algorithms is to perform a computer 
simulation on real-life data. The data from the foreign 
exchange market, Forex,are perfectly suited for those purposes. 

Forex is the market with discrete data, which are generated 
in small time intervals. On many websites there are available 
archival Forex data at different granulation time, for example 
10 minutes, 1 minute, 10 seconds or even two seconds. The 
exemplary graph with the data from the Forex market is shown 
in Fig. 10. 

Because of so short time intervals the on-line analysis of 
the Forex data used to predict increase or decrease of the 
exchange rate has strict time limits. The computational 
effectiveness of used in the analysis algorithms is the issue 
here. It is also the excellent example of linear regression 
model. 
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. 

 

Figure 10.  EUR to USD exchange rate for one hour of the day 16.04.2012. 

B. Speed tests 

In computer simulation there were used the source codes 
presented in this paper and the data from the Forex market in 
two-second granularity. There were five time series of the 
exchange rates considered: the euro to the Swiss franc 
(EUR / CHF), the euro to the Norwegian krone (EUR / NOK), 
the euro to the U.S. dollar (EUR / USD), silver to the U.S. 
dollar (AG / USD) and gold to the U.S. dollar (AU / USD). 

For different number of rows of the linear regression matrix 
in the interval from 5 to 700 and for each of five time series of 
length 25000 the computations were performed. Two 
competitive methods were considered: 

1. M1 – the QR factorization updating algorithm with 
matrices Q and R constructed and remembered 
(procedures qrdelete and qrinsert from [1]), 

2. M2 – the QR factorization algorithm with matrices R, 
S and C described in this paper (procedures 
qrdelete_new and qrinsert_new). 

TABLE I. AVERAGE TIME OF COMPUTATIONS DEPENDING ON THE 

NUMEBER OF ROWS AND THE UPDATING ALGORITHM: M1 AND M2. 
MEASURED TIME ARE PRESENTED IN HUNDREDTHS OF A SECOND. 

          m 

data 

10 100 

M1 M2 M1 M2 

EUR/CHF 0.35 0.30 2.71 2.27 

EUR/NOK 0.31 0.27 2.65 2.23 

EUR/USD 0.32 0.28 2.62 2.21 

AG/USD 0.31 0.28 2.66 2.23 

AU/USD 0.31 0.28 2.59 2.20 

AVERAGE 0.32 0.28 2.65 2.23 

     

          m 

data 

200 300 

M1 M2 M1 M2 

EUR/CHF 5.50 4.45 8.70 6.67 

EUR/NOK 5.61 4.46 8.64 6.67 

EUR/USD 5.42 4.39 8.45 6.53 

AG/USD 5.47 4.46 8.48 6.53 

AU/USD 5.37 4.36 8.42 6.51 

AVERAGE 5.48 4.42 8.54 6.58 

 

Computations were performed in Octave, program similar 
to Matlab, but distributed under the terms of the GNU General 
Public License. The time of computations was measured for 
every value of m and every m consecutive values of each of 
time series. Obtain times were averaged over the time series 
and different values of m. The results are gathered in Tab. I. 

The data from the numerical experiment presented in Tab. I 
are clearly the confirmation of the theoretical theorems. This 
advantage is even better seen in Fig. 11. The new developed 
method of updating the QR factorization is faster for every 
value of m. 

 

 

Figure 11.  The comparison of the time of computations two methods M1 and M2 depending on number of rows of the matrix A.  
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IV. CONCLUSIONS 

Theoretical analysis of new developed algorithm of 
updating the QR factorization together with the computer 
simulations leads to the following conclusions: 

· the computational speed of the new algorithm is much 
better than the speed of existing algorithms, 

· the numerical properties of the new algorithm is at 
least as good as the numerical accuracy of other 
methods based on orthogonal decomposition of the 
matrix A, 

· procedure qrinsert_new is much more time consuming 
than the procedure qrdelete_new (proportional to m 
flops vs. constant number of operations), 

· the memory complexity of the new method is much 
improved relatively to existing updating methods 
(proportional to m

2
 vs. proportional to mn). 

The presented algorithm of updating the QR factorization 
without storing the matrix Q explicitly is meant to be the 
foundation for solving simple linear least squares problem. It 
should be an excellent start for building faster and more 
efficient algorithms working on big and fast changing sets of 
data. Certainly, it is worth to consider the following 
generalizations and modifications of described in this paper 
algorithm: 

· the extension to the polynomial regression models and 
to models with greater number of variables, 

· the case of nonlinear regression. 
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